
Antimicrobial Stewardship at Kaweah Delta: An Overview

Objectives

- Describe the clinical benefits, goals, and structure of the KD Antimicrobial Stewardship Program
- Highlight key distinctions between asymptomatic bacteriuria and true urinary tract infections
- Review appropriate diagnostic tests and cultures
- Select empiric therapy using hospital-approved PowerPlans
- Demonstrate the importance of antimicrobial deescalation
- Select appropriate evidence-based durations of therapy

What is Antimicrobial Stewardship?

 "Coordinated interventions designed to improve and measure the appropriate use of [antibiotic] agents by promoting the selection of the optimal [antibiotic] drug regimen including dosing, duration of therapy, and route of administration."

Why is Stewardship Important?

- 30-50% of antibiotic orders/treatment is unnecessary or inappropriate (possible underestimate)
- 142,000 ED visits in 2008 for antibiotic adverse events
- CDC estimates >2 million cases & 23,000 deaths/year from multi-drug resistant organism infections
 - ESBL, CRE, MRSA, VRE
 - Increased mortality, more difficult to treat, more costly medications
- CDC estimates 250,000 cases & 14,000 deaths/year from C. difficile infections
 - Directly related to antibiotic use
 - High risk medications include: clindamycin, fluoroquinolones, ceftriaxone, antipseudomonal β-lactams
- Unnecessary antibiotics increase hospital costs and contribute to longer lengths of stay

Goals of Stewardship

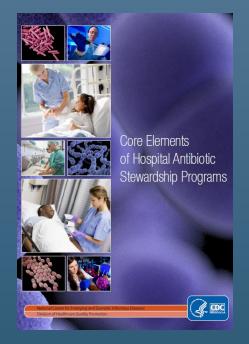
- Primary goals
 - Optimize clinical outcomes through antimicrobial
 - Selection
 - Dosing
 - Route
 - Duration
 - Reduce resistance
 - Minimize toxicity
 - Reduce super-infections (e.g. C. difficile)
 - Reduce unnecessary antimicrobial use

- Secondary goal
 - Control costs

Infectious Diseases Team

Daniel Boken, MD Board Certified-Infectious Diseases Stewardship Physician Leader

Mina Raju, DO Board Certified-Infectious Diseases


Benjamin Ereshefsky, PharmD, BCIDP

Stewardship Pharmacist Leader

Infection Prevention Manager Shawn Elkins, MPA, BSN, RN Clinical Laboratory Director Randy Kokka, MPH, CLS

Antimicrobial Stewardship Focus

- Detailed chart review of patients on antimicrobial therapy
 - Available 5 days a week (M-F 8:00 am 5:00 pm)
 - Evaluation of cultures and susceptibilities
 - Recommendations for optimization or discontinuation of antimicrobials (e.g. "prospective audit and feedback")
- Development of institutional policies and protocols
 - Empiric antimicrobial use
 - Diagnostic testing
 - Infection prevention
- Education
- Track and review antimicrobial utilization and expenditures

Broad Interventions

- Antibiotic time-out
- Restrictions or pre-authorization
- Prospective audit with feedback

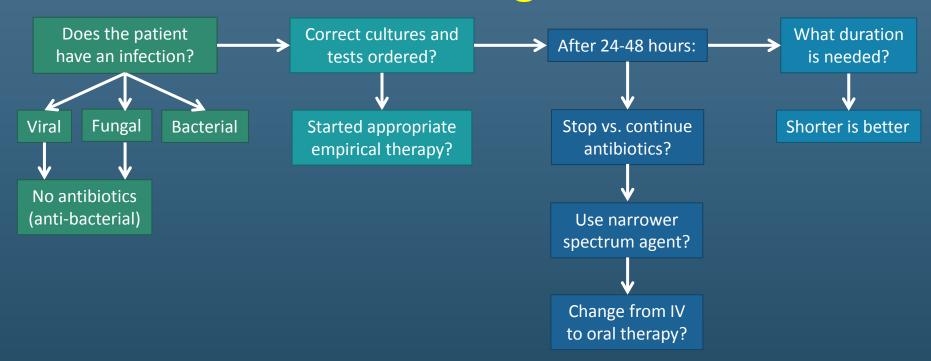
Pharmacy-Driven Interventions

- IV to PO interchange
- Renal adjustment protocol
- Pharmacokinetic monitoring (e.g., vanc, AMG)
- Dose optimization (e.g. extended-infusion Zosyn)
- Duplicate therapy alerts
- Automatic stop orders (e.g. 7 days for antibiotics)

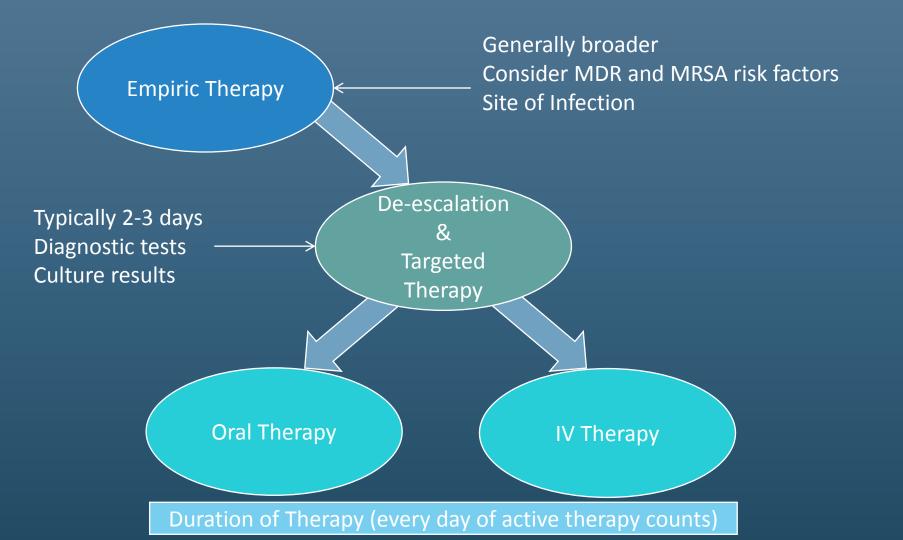
Diagnosis & Infection Specific Interventions

- CAP
- UTI
- SSTI
- Surgical Prophylaxis
- MRSA
- C. difficile infection
- Culture-positive infections

Other


- Leadership support
- Physician and pharmacist leaders
- Monitor antimicrobial use
- Annual antibiogram
- Education to clinicians and other staff

Stewardship Rounds


- Conducted Monday, Wednesday, and Friday
- Recommendations entered as "Stewardship Rounds" progress notes by Dr. Boken
- Stewardship review requests are always welcome
 - Contact ID pharmacist at x6606
 - Contact Dr. Boken via cellphone/text

The 4 Moments of Antibiotic Decision Making

Tama P. JAMA. 2019;321(2):139-140.

Wald-Dickler N. Clin Infect Dis. 2019.doi: 10.1093/cid/ciy1134.

Determining Presence of Infection

Asymptomatic Bacteriuria (ASB)

Definition

"Asymptomatic bacteriuria (ASB) is the presence of 1 or more species of <u>bacteria</u> in the urine at specified quantitative counts ($\geq 10^5$ colony-forming units [CFU]/mL or $\geq 10^8$ CFU/L), irrespective of the presence of <u>pyuria</u>, in the absence of signs or symptoms attributable to urinary tract infection (UTI)."

 Not treating ASB is an important stewardship goal to reduce unnecessary antibiotic use

Asymptomatic Bacteriuria

Do NOT screen for or treat ASB in:

- Healthy premenopausal, non-pregnant women or healthy postmenopausal women
- Older, community-dwelling adults with functional impairment
- Older residents of long-term care facilities
- Patients with diabetes
- Patients with renal transplants >1 month after surgery
- Patients with spinal cord injury
- Patients with short-term and long-term indwelling urethral catheters
- Patients undergoing elective non-urologic surgery

Look for other cause of symptoms and observe:

Older patients with functional and/or cognitive impairment with bacteriuria and without local GU symptoms or other systemic signs of infection (e.g. fever, hemodynamic instability) with

- Delirium (acute mental status change, confusion)
- Fall

Risk of Treating ASB

- C. difficile infection
- Antimicrobial resistance
- Symptomatic UTI
- Adverse drug effects from antibiotics

"Antimicrobial treatment did not confer any benefits."

UTI Symptoms: No Catheter

At least **ONE** of:

- Acute dysuria
- Acute pain, swelling, tenderness of testes, epididymis, or prostrate

At least **ONE** of:

Fever

<u>OR</u>

Leukocytosis

AND

At least **ONE** of:

- CVA pain or tenderness
- New/increased suprapubic tenderness
- Gross hematuria
- New/increased incontinence
- New/increased urgency
- New/increased frequency

Use "Suspected UTI PowerPlan to order UA with reflex culture if indicated

UTI Symptoms: Catheter Associated*

At least **ONE** of:

- Fever
- Rigors
- New onset hypotension, with no alternate cause
- New onset confusion/function decline (AMS) with no alternate diagnosis AND leukocytosis
- New CVA pain or tenderness
- New or increased suprapubic tenderness
- Acute pain, swelling, or tenderness of testes, epididymis, or prostate
- Purulent discharge from around catheter

*Bacteriuria rate: 3-5% per catheter day

Use "Suspected UTI PowerPlan to order UA with reflex culture if indicated

Ordering Tests, Cultures, Empiric Therapy

When and What to Culture? ~~~~~

- Obtain BEFORE starting antibiotics if possible
- Culture only sites where infection is suspected.
 - Pan-culturing when a source is suspected can result in confounding information (contaminants or colonization)
 - Unnecessary urine cultures are #1 cause of colonization treatment
- NEVER culture/swab surface wounds
 - High rates of colonization
 - Results can mask the true pathogen
 - Deep or surgical cultures preferred

Blood Cultures

- If initial blood cultures are negative, repeats are unnecessary
- Repeating blood cultures in gram-negative rod bacteremia is largely <u>unnecessary</u>
- If initial blood cultures show coagulase-negative staphylococci contaminants, repeats are <u>unnecessary</u>
- In *S. aureus* bacteremia or candidemia, repeat blood cultures every 24-48 hours until first negative culture

BioFire Rapid Diagnostic Platform

- Multiplex PCR technology to rapidly detect a wide array of pathogenic organisms
- Samples include:
 - Nasopharyngeal swab (RP2 panel)
 - Cerebrospinal fluid (ME panel)
 - Blood cultures (BCID panel)
 - Deep respiratory secretions (Pneumonia panel)
 - Stool (GI Panel)
- For detailed usage and treatment guide go to:
 - KDNet→Manuals Resources→Pharmacy→Pharmacy
 References→"BioFire Protocol"

C. difficile Testing Criteria

Hospital policy: PC.255

Testing Inclusion Criteria:

- Three or more loose & watery stools in ≥24 hours
- Presence of at least one of the following
 - Abdominal cramping, tenderness, or pain
 - Temperature ≥38°C and no other source
 - Radiologic evidence of colitis

Testing Exclusion Criteria:

- Formed or semi-formed stool
- Laxative, stool softener, enema, or bowel prep within 24 hours
- Positive C. diff test in past 21 days
- Negative C. diff test in past 7 days

Positive test collected >3 days after admission

Do not send a stool sample for a test of cure!!!!

Hospital Antibiogram — 2018

			Amin	oglyco	sides					actam	Antib											_				
						Cephalosporins				Penicillins				Other			Miscellaneous				Gram-Positive Antibiotic				_	
	KDHC Antibiotic % Susceptibility Report 2018 Questions? Contact Microbiology x2638	# Isolates Tested	Amikacin	Tobramycin	Gentamicin	Cefazolin	Cefuroxime-axetil	Ceftriaxone	Ceftazidime	Ampicillin	Amoxicillin/clavulanate	Ampicillin/sulbactam	Piperacillin/tazobactam	Meropenem	Aztreonam	Levofloxacin	Trimethoprim/sulfa	Nitrofurantoin	Tetracycline	Clindamycin	Fosfomycin	Vancomycin	Oxacillin (nafcillin)	Penicillin	Linezolid	Erythromycin (azithromycin)
	Acinetobacter baumannii	34	-	100	100	-	-	12	82	-	-	100	85	97	-	88	97	-	100	-	-	-	-	-	-	-
	Citrobacter freundii	79	100	92	92	-	-	82	84	-	-	-	81	100	82	91	80	99	80	-	-	-	-	-	-	-
	Citrobacter koseri	50	100	100	100	98	57	100	100	-	100	-	100	100	100	100	100	76	100	-	-	-	-	-	-	-
<u>_</u>	Enterobacter cloacae	150	100	99	99	-	-	85	85	-	-	-	85	98	85	97	93	38	94	-	-	-	-	-	-	-
š.	Escherichia coli	4295	100	90	89	83	82	93	93	49	80	56	96	100	93	80	71	95	73	-	-	-	-	-	-	-
gative	Klebsiella aerogenes	107	100	98	98	-	-	86	85	-	-	-	85	100	89	99	96	-	97	-	-	-	-	-	-	-
Ne	Klebsiella oxytoca	74	100	100	99	62	91	97	100	-	92	76	92	100	95	100	95	78	91	-	-	-	-	-	-	-
ΙĖ	Klebsiella pneumoniae	767	100	97	98	92	91	95	94	-	95	85	95	100	95	97	92	26	86	-	-	-	-	-	-	-
Gra	Morganella morganii	63	100	94	73	-	-	94	90	-	-	-	98	100	98	85	65	-	-	-	-	-	-	-	-	-
	Proteus mirabilis	322	100	84	82	94	97	99	99	72	92	78	100	100	99	75	70	-	-	-	-	-	-	-	-	-
	Pseudomonas aeruginosa	406	99	97	95	-	-	-	91	-	-	-	92	97	N/A	86	-	-	-	-	-	-	-	-	-	-
	Serratia marcescens	76	100	91	100	-	-	100	100	-	-	-	99	100	100	99	100	-	50	-	-	-	-	-	-	-
	Stenotrophomonas maltophilia	32	-	-	-	-	-	-	-	-	-	-	-	-	-	100	100	-	-	-	-	-	-	-	-	-
Gram-Positives	Enterococcus faecalis	178	-	-	-	-	-	-	-	99	-	-	-	-	-	-	-	98	18	-	-	99	-	99	96	
	Enterococcus faecium	40	-	-	-	-	-	-	-	28	-	-	-	-	-	-	-	20	28	-	-	40	-	28	95	-
	Staphylococcus aureus	1136	-	-	-	-	-	-	-	-	-	-	-	-	-	-	98	100	93	86	-	100	54	16	100	-
	CoNS	206	-	-	-	-	-	-	-	-	-	-	-	-	-	-	64	100	85	63	-	100	43	10	100	-
5	Streptococcus pneumoniae	65	-	-	-	-	-	98 ^b	-	-	-	-	-	-	-	100	83	-	85	94	-	100	-	100ª	100	74

^aPenicillin G: pneumonia 100%; meningitis 80%

^bCeftriaxone: meningitis 94%; non-meningitis 98%

Ceftriaxone Resistance: E. coli 7% K. pneumoniae 5% K. oxytoca 3% P. mirabilis 1%

MRSA Rate: 46% VRE Rate: 12%

β-Lactam Allergies

- Up to 90% of patients with a reported allergy are really not allergic
- Patients with allergies >10 years old have a high chance of losing their sensitivity
- Patients with reported allergies receive:
 - Broader-spectrum antibiotics
 - Less effective antibiotics
 - More harmful antibiotics
 - More expensive antibiotics

Managing Patients With β-lactam Allergies

- Determine <u>what</u> the reaction was, <u>whether</u> rescue medications (e.g. epinephrine) were needed, <u>when</u> it occurred, <u>what</u> drug they received
- Ask about subsequent antibiotic use (ask a pharmacist to review previous inpatient and outpatient medications)
- Know the risk for cross-reactivity:
 - Mild reactions (e.g. rash) to penicillins usually indicate tolerance to cephalosporins
 - Cephalosporins like cefazolin, ceftriaxone, and cefuroxime have very low cross-reactivity with penicillin/amoxicillin
 - GI related reactions (e.g. nausea, vomiting, diarrhea) are **NOT** allergies so alternative therapies are not needed
- Assess risks and benefits of using alternative or 2nd line therapy

Serious Side Effects from Fluoroquinolones

Musculoskeletal & Peripheral Nervous System

- Tendinitis
- Tendon Rupture
- Numbness/Tingling in arms/legs
- Muscle Weakness
- Muscle Pain
- Joint Pain
- Joint Swelling

Central Nervous System

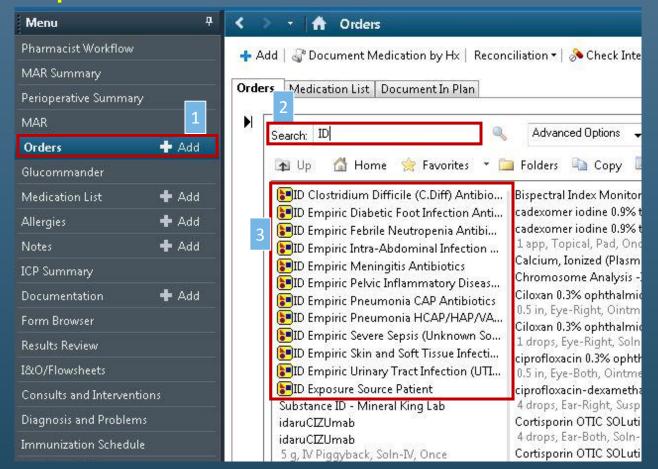
- Anxiety
- Depression
- Hallucinations
- Suicidal Thoughts
- Confusion
- Hypoglycemic coma

Other Body Systems

- Severe Diarrhea (C. difficile)
- Worsening of myasthenia gravis
- Skin Rash
- Skin Burn
- Abnormal, rapid, or strong heart beat
- Aortic aneurysm rupture or dissection

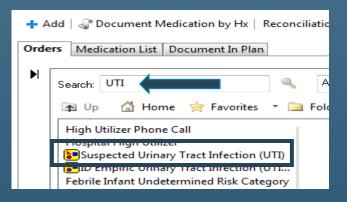
Risks generally outweigh the benefits for uncomplicated infections when other options are available

FDA Drug Safety Communication: FDA updates warnings for oral and injectable fluoroquinolone antibiotics due to disabling side effects. U.S. Food & Drug Administration. July 26, 2016. http://www.fda.gov/DrugSafety/ucm511530.htm?source=govdelivery&utm_medium=email&utm_source=govdelivery.

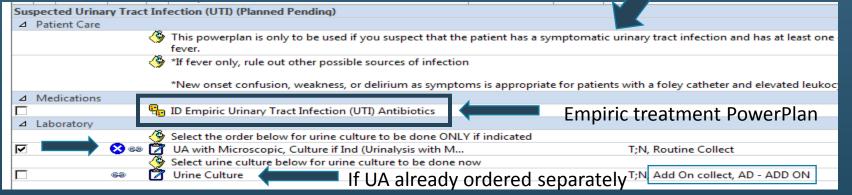

FDA News Release: FDA updates warnings for fluoroquinolone antibiotics on risks of mental health and low blood sugar adverse reactions. July 10, 2018. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm612995.htm.

FDA Drug Safety Communication: FDA warns about increased risk of ruptures or tears in the aorta blood vessel with fluoroquinolone antibiotics in certain patients. December, 20, 2018. https://www.fda.gov/DrugS/DrugSafety/ucm628753.htm.

Using PowerPlans (Order Sets)


- Select the appropriate PowerPlan based on suspected source of infection
- Select treatment based on the criteria outlined in PowerPlan that fits patient presentation
- Treatment options for preferred or alternative (e.g. for allergies) therapy provided

Empiric Antibiotic PowerPlans



Suspected UTI PowerPlan

Ordering

Urinary symptoms to assess **BEFORE**ordering

De-escalation and Discontinuing Empiric Therapy

Anti-Pseudomonal and Anti-MRSA Treatment

- Use empirically **ONLY** if patient has risk factors or if severe sepsis/shock
- MRSA risk factors
 - Hemodialysis
 - Necrotizing or cavitary community-acquired pneumonia
 - Purulent skin and soft tissue infection
 - Central lines
- P. aeruginosa risk factors
 - IV antibiotics in previous 90 days
 - Structural lung disease in community-acquired pneumonia
 - Severe immunocompromise (e.g. neutropenic fever)
 - Prolonged hospitalization

Admission from a nursing home alone is **NOT** a reason to start anti-pseudomonal or anti-MRSA treatment

Prolonged coverage for these organisms is inappropriate if not isolated from culture and no risk factors

De-Escalation in Respiratory Infections

- MRSA nasal swab
 - >95% negative predictive value for MRSA pneumonia
 - <u>Recommendation</u>: discontinue vancomycin or linezolid with negative result
 - Found to decrease anti-MRSA treatment by ~2 days¹
- Respiratory culture: "No MRSA or Pseudomonas detected"
 - Microbiology comment on cultures with normal flora²
 - Overuse of anti-MRSA and anti-pseudomonal treatment for HCAP and CAP
 - <u>Recommendation</u>: discontinue coverage for MRSA and *P. aeruginosa* and use a narrower spectrum agent if antibiotics still needed

Avoid Patient Harm

- Vancomycin PLUS piperacillin/tazobactam has shown greater risk for acute kidney injury than:
- Vancomycin alone
- Piperacillin/tazobactam alone

If combination of vancomycin and piperacillin/tazobactam used empirically, DE-ESCALATE as quickly as possible, especially if other nephrotoxins present (e.g. contrast, NSAIDs, ACE inhibitors)

Prolonged Use of Anti-Pseudomonal β-Lactams

- Promotes increased risk for gram-negative resistant organisms
 - More difficult to treat (highly resistant GNR antibiotics non-formulary)
 - Higher rates of mortality
- Increases risk for *C. difficile* infection
 - Prolongs length of stay or leads to readmission
 - Significant morbidity or mortality, especially for elderly patients
 - Hospital-onset *C. difficile* infection rates are publicly reported

De-escalation is important to reduce patient harm!

Use the narrowest spectrum agent possible

Duration of Therapy

How Long to Treat? Shorter is Better

Infection	Short (days)	Long (days)
Community-acquired pneumonia	3-5	7-10
Hospital-acquired/ventilator-associated pneumonia	7-8	14-15
Pyelonephritis/complicated UTI	5-7	10-14
Post-operative intraabdominal infection	4	10
Gram-negative bacteremia	7	14
COPD exacerbation	≤5	≥7
Acute cellulitis/major abscess	5-6	10
Empiric neutropenic fever	72h (afebrile/stable)	72h (afebrile/ stable/ ANC >500 cells/μL

Unnecessary/Inappropriate Antibiotic Use Increases Risk...

- Over 140,000 ED visits/year for adverse events from antibiotics (19%)¹
- *C. difficile* infection²
 - Clindamycin
 - Fluoroquinolones
 - Ceftriaxone
 - Anti-pseudomonal β-lactams
- Antibiotic Resistant Organisms
 - ESBL, CRE (carbapenem-resistant enterobacteriaceae), MRSA, VRE³
 - More difficult to treat, more costly treatment
 - Increased mortality

¹https://www.cdc.gov/medicationsafety/program_focus_activities.html ²Owens RC. *Clin Infect Dis*. 2008;46(S1):S19-31.

³Rao GG. *Drugs*. 1998;55(3):323-30.

How Long Should | Treat S. aureus Bacteremia?

Uncomplicated¹

- No evidence of endocarditis
- No implanted prostheses
- Repeat blood cultures negative (2-4 days after initial positive)
- Defervescence within 72 hours of initiating treatment
- No evidence of metastatic sites of infection

Uncomplicated (CLABSI)²

- Not diabetic
- Not immunosuppressed
- Infected catheter removed
- No prosthetic devices
- No evidence of endocarditis
- No evidence of suppurative thrombophlebitis
- Fever and bacteremia resolve within 72 hours
- No evidence of metastatic infection

Complicated^{1,2}

Do not meet uncomplicated criteria

Duration: 4-6 weeks

(consider 6 to ≥8 weeks if high-risk for recurrence in vertebral osteomyelitis³)

Endocarditis^{1,4}

Duration: 6 weeks

(consider ≥6 weeks if prosthetic valve involved)

³Park K. Clin Infect Dis. 2016;62(10):1262-9.

⁴Baddour LM. *Ciruclation*. 2015;132:1435-86.

S. Aureus Bacteremia: A Case for Process Improvement

- Repeat blood cultures every 1-2 days after initial positive culture in order to document clearance
- Echocardiogram (TEE > TTE) in all bacteremic patients
- Identify and eliminate the source of infection if possible
- Three Rs:
 - Right drug
 - Right dose
 - Right duration
- STRONGLY consider ID consult in S. aureus bacteremia (reduction in mortality, identification of source)

Treatment of MSSA Bacteremia

- Vancomycin is <u>inferior</u> to anti-staphylococcal βlactams and result in greater mortality
 - Once blood culture identified as MSSA de-escalate
 - If β-lactam allergy assess patient ability to tolerate cefazolin or nafcillin
- Cefazolin has shown similar outcomes to nafcillin
 - Less adverse reactions and need to discontinue
 - Less expensive
 - Nafcillin advantage in CNS infection

The Critical Balance

Infection prevention

Correct identification of an infection

Appropriate empiric treatment reduces mortality

Improves patient outcomes

Overly broad-spectrum therapy increases resistance

Risk for adverse effects and *C. difficile* infection

 $^{\prime}$ Always be \setminus De-escalating

Worsens patient outcomes

Conclusions

- Antimicrobial stewardship is designed to help with decisions about the <u>best</u> treatment for the patient
 - Improves clinical outcomes
 - Avoid harm to patients (e.g. *C. difficile*, resistance, adverse drug effects)
- PowerPlans and antibiogram aid in ordering empiric therapy
- De-escalate as soon as possible to the narrowest spectrum drug
- Contact the Antimicrobial Stewardship Team with any questions
 - Pharmacist contact: Ext 6606